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THE 67 Hz FEATURE IN THE BLACK HOLE CANDIDATE GRS 1915+105 AS A POSSIBLE
"DISKOSEISMIC" MODE

MICHAEL A. NOWAK, 1 ROBERT W. WAGONER, 2 MITCHELL C. BEGELMAN, 1'3 AND DANA E. LEHR 2

Received 1996 November 4; accepted 1996 December 20

ABSTRACT

The Rossi X-Ray Timing Explorer has made feasible for the first time the search for high-frequency (_ 100 Hz)

periodic features in black hole candidate (BHC) systems. Such a feature, with a 67 Hz frequency, recently has
been discovered in the BHC GRS 1915+105 (Morgan, Remillard, & Greiner). This feature is weak (rms

variability ,-,0.3%-1.6%), stable in frequency (to within ~2 Hz) despite appreciable luminosity fluctuations, and
narrow (quality factor Q ~ 20). Several of these properties are what one expects for a "diskoseismic" g-mode in
an accretion disk about a 10.6 M® (nonrotating) to 36.3 M® (maximally rotating) black hole (if we are observing
the fundamental-mode frequency). We explore this possibility by considering the expected luminosity modula-
tion, as well as possible excitation and growth mechanisms--including turbulent excitation, damping, and
"negative" radiation damping. We conclude that a diskoseismic interpretation of the observations is viable.

Subject headings: black hole physics -- X-rays: stars

1. INTRODUCTION

In a series of previous papers (Nowak & Wagoner 1992,
1993; Perez et al. 1997; hereafter NW92, NW93, and P97,
respectively), we have discussed a class of modes in thin,
Keplerian accretion disks that exist only in the presence of
strong-field gravity (not in Newtonian gravity), some of whose
eigenfrequencies depend primarily upon the mass and angular
momentum of the black hole. The modes are trapped by

general relativistic modification of the radial (K) and vertical
(IL) epicyclic frequencies of free-particle, circular orbit per-
turbations (P97, and references therein).

These modes of oscillation are perturbations of the disk that

are proportional to exp [i(crt + m_b)]. With disk angular
velocity I)(r), their corotating frequency is oJ(r) = cr + mI).
Three classes of modes (p-, g-, and c-modes) have been

identified (P97, and references therein). However, here we
shall be concerned solely with radial (m = 0) g-modes, which
are the most relevant observationally. 4 These g-modes are

trapped where o92 < K2, in the region wh,ere K achieves its
maximum value (at r = 8GM/c 2 for a nonrotating black hole)
because, unlike in Newtonian gravity, K(r) rolls over at small r
and vanishes at the inner disk edge, thereby creating a
resonant cavity. The modes with the fewest radial nodes have
relatively large radial extents, Ar _ GM/c'-.

The frequencies (f = -o'/21r) of the radial g-modes are

+ I
% ~ t 7 ItTI (1)

(see P97). Here F(a) is a known function of the dimensionless
black hole angular momentum parameter a = cJIGM'-, rang-
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temperature is maximum (away from the uncertain conditions at the disk edge).

ing from F(0) = 1 to F(0.998) = 3.443. The properties of the
disk enter only through the small correction term involving the
disk thickness 2h, and the radial (n) and vertical (j) mode

numbers, with _5~ 1 (as derived from the WKB solutions of

P97). For thin-disk models in which h/r ~ O.1L/LEdd (in the
mode-trapping region), % is typically on the order of 1% for
the lowest modes (n ~j ~ 1). Therefore, the mode frequency

is relatively independent of disk luminosity. (The mode width,
however, scales as _r 0c c=_/2och _/2,where c, is the sound speed

in the disk.) The radial g-mode is thus a good candidate for
explaining the recently discovered high-frequency features in
the black hole candidate GRS 1915+105.

The observed frequency of this feature is 67 Hz, with a full
width at half-maximum of 3-4 Hz (Morgan, Remillard, &

Greiner 1996, 1997). This implies an effective Q = f/Af ~ 20.

Despite factors of ~2 luminosity variations in the source, the
frequency remained constant to within 1-2 Hz. The root mean
square (rms) variability of the 67 Hz feature varied from 0.3%
to 1.6% of the total observed X-ray luminosity, with the lower

limit essentially being the Poisson noise limit. At its strongest,
the rms variability is '-, 1% below 6 keV, and the rms variability
is ,-,6% in the 12-25 keV band, which indicates that the

spectrum of the feature is harder than the integrated source
spectrum. (The spectrum of the source is fitted by a power law

exponentially cut off at ~5 keV.)
Below we discuss to what extent g-modes can explain these

observations. In § 2, we further review the properties of these
modes and make simple estimates of their luminosity modu-
lation. In § 3, we discuss application to GRS 1915 + 105. In § 4,
we discuss the role of turbulence and radiation as possiL!e

damping, growth, or excitation mechanisms. In § 5, we present
our conclusions.
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2. LUMINOSITY MODULATION OF MODES

For both the psuedo-Newtonian (NW92, NW93) and fully

relativistic (P97) diskoseismology calculations, the equations
are formulated in terms of the potential V =- 8P/p, where _P
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is the Eulerian variation of the pressure and O is the unper-
turbed density. For modes with an azimuthal and time depen-
dence ocexp [i(m4, + o't)], the potential V(r, 7, ok, t) can be

separated into a radial, V,(r), and a vertical, Vn('0), component,
where "0- z/h(r) is the dimensionless vertical coordinate. The
(small) fluid displacement vector, _, can be related to the
Eulerian potential V(r, 7, dp, t) via the equations

_(r, _b, z, t) _ (0)2 - K2)-'

X exp [i(mdp + o.t)]V_(OV,/Or),

_:(r, _b, z, t) _. (co2 - N_)-'
(2)

× exp [i(m_b + o't)]V_(OVJOz),

where N_.(_) is the vertical buoyancy frequency, which we shall
set to zero (see P97 for a discussion of the role of nonvanishing
buoyancy frequency). We shall usually use A to denote a
Lagrangian variation of a given quantity, where we follow the
definitions of NW92, NW93, and P97. (For m = 0, g-modes
have w2 = o.2 _< K2.)

The radial component of the fluid displacement approxi-
mately satisfies the WKB relation

d2W
2 , -- + (to 2 - K2)(_o-' - Y_q_)W = 0,_oc;(r, O) dr 2 (3)

where Y(r) is a slowly varying separation function (akin to a
separation constant in the WKB limit), c,(r, 0) is the speed of
sound at the disk midplane, W =--(_d - w-')-_dV,/dr, and _l =
D. for a nonrotating black hole. We have taken the perturba-
tions to be adiabatic, which means that the Lagrangian per-
turbation of the pressure and density are given by M_/P =
"Y&P/P _ --T _ " _. Utilizing the radial WKB approximation
employed in equation (3), the (approximate) components of
the divergence become

-- _ [(Ya 2 - to2)/h2fl2to -'] exp (io-t)V,(r)V,('O),
0r

-- _ (ho2) -2 exp (io.t)U(r) -- (4)
Oz 0_-'

(We have also taken the unperturbed vertical barotropie

structure to be in hydrostatic equilibrium.)
For most simple a-models, the energy generation rate per

unit volume is appi'oximately aP(r, z)_(r). The modes not only
perturb the pressure (we ignore possible perturbations to a,
and one can show that perturbations to _ are negligible), but
they also perturb the locations of the disk boundaries. The

variation of theluminosity is therefore

_L ~ r' dr' j_,+e__,o) afIP'(r', z') dz

fofo ]- r dr M1P(r, z) dz , (5)
20

where P'(r', z') =- P(r, z)+ AP(r, z), r' =--r + _r(r), Z' =
Z + _(Z), and rh to, and zo are the disk boundaries (to can be

taken to go to _o without loss of generality). Transforming
variables, the change in luminosity can be written as

fro ?6L ~ 27r dr af_(r)r dz P(r, z) x (1 - 7)V"

-20

+ 0r0z v(v'_)-' -_,°_°_:v'_, (6)Or Oz

where we have employed the above expression for the La-
grangian pressure change and have employed the WKB ap-
proximation in each harmonic term above.

The luminosity fluctuation in general will have contributions
from the fundamental frequency, as well as from the first two
harmonics. We have calculated the luminosity modulation for
modes in a disk with radial sound speed profile equal to that of
a radiation pressure-dominated Shakura-Sunyaev disk with
L/Lrdd = 0.3. The exact radial profile does not greatly affect
the estimates, as we can replace the quantity f P(r, 0)fl(r) dz
with F(r), the disk energy flux, which is known from energy
conservation. As the mode width _" 0ch m, the magnitude ofh
does affect the luminosity estimates. If we define the moMmum
magnitude (achieved at a radius r.,) of the vertical displace-
ment vector _.(r.,, z, t) to be -=_h(r.,), then for the case of the
mode with one radial node in V, and two vertical nodes in
V, (0_:/0_ even about the midplane), 5 we have

6L
-- _ (0.6%)_ sin (o.t + 0) - (9.8%)_ 2
L

× sin-" (o.t + 0) + (0.2%)_ 3 sin 3 (o.t + 0). (7)

(Here we have used the psuedo-Newtonian approximation of
NW92 and NW93 for our calculations.) This is the modulation
of the bolomeo@ luminosity. As the mode exists in the inner,
hotter regions of the accretion disk, the modulation in re-
stricted high-energy bandpasses will be greater. However, we
have not properly accounted for radiative transfer effects.
Dispersion in photon diffusion times over the extent of the
mode will decrease the modulated luminosity for large optical
depths.

3. APPLICATION TO GRS 1915+105

Although the above luminosity modulation is not large,
,-, 0.6-1.6 produces, at the fundamental frequency, rms

variability "-0.3%-1.6% (=[(0.6%)Ye + (0.2%)Ye3]/\2), as
is seen for the feature in GRS 1915+105. The first harmonic

can produce this observed rms variability for _ " 0.3-0.7.
(The_rms variability is the coefficient of the sin 2 term divided
by _!8.) The modulation seen in GRS 1915+105 increases to
6% if the energy band is restricted to the 12-25 keV range.
This qualitatively agrees with what we expect for our modes. If
we compare the bolometric luminosity variation of the mode
to the bolometric luminosity from the region r _- (6-
20)GM/d, the relative fractional variation increases to "-6%.

For the particular radial and vertical disk structure assumed
here, the rms variability in the first harmonic is more signifi-
cant than the rms variability in the fundamental frequency. As
so little is known, both observationally and theoretically, about

s The first "even" mode about the midplane is not trapped in the region of
the epicyclic frequency maximum. The first "odd" mode leads to a vanishing
vertical integral in the above estimate of luminositymodulation.
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diskverticalprofiles,wecannotdefinitivelystatewhetherthis
featureisgeneric.Baseduponenergyarguments,however,we
can say that generically disk modes can only produce rms
variability ~O(1%) if _ ,-- 1. We regard the question of which
frequency, the fundamental or first harmonic, to associate with
the observed 67 Hz feature as an open issue.

Equation (1) indicates that a 67 Hz (fundamental) modula-
tion can be produced in a disk around a black hole with a mass
of 10.6 M® for a nonrotating hole and 36.3 M® for a maximally
rotating hole. There are few "natural" frequencies to invoke in
a black hole system. If one were to appeal to a process
occurring at the marginally stable orbit (r = 6GM/c 2 for a
nonrotating black hole), not only would the luminosity from
this region be lower than our mode estimates (owing to the
no-torque boundary condition used in disk models), but also
the required hole mass would increase by a factor of at least
16/(3x 3) "-. 3 (if the 67 Hz feature represents the fundamen-
tal mode frequency). Our nonrotating hole, fundamental
frequency, estimate of the required mass would yield an
observed X-ray luminosity (Morgan et al. 1997) _>30% of the
Eddington luminosity, consistent with our assumptions above.

4. MODE EXCITATION AND SELECTION EFFECTS

4.1. Turbulent Damping and Excitation

It is possible to use a parameterized stress tensor to estimate
the effects of turbulent viscosity on the modes (NW92, NW93).
The canonical energy of a radial mode is Ec ~ o'2p(_._ + _5_)AV,
where AV is the volume occupied by the mode. Isotropic
turbulence produces a rate of change dEc/& =- -Ec/r, with
T ~ [acr(h2/A_ + h2/h_)] -1 and L, _,:, respectively, being the
radial and vertical mode wavelengths. The corresponding
quality factor is given by

Q;I = ([o.[r)-i _ [j2 + (h/r)n2]o_, (8)

as h. ~ h/j and A, ~ (hr)_/2/n, wherej and n are of the order
of the number of vertical and radial nodes in any particular
eigenfunction. Thus, for a << 1, we can have high-mode Q.

The other contribution to the fractional width Af/f of the
corresponding feature in a power spectrum comes from the
number of modes that are significantly excited. If we assume
that this will include those whose wavelengths are greater than
the maximum eddy size L ".. a_/'-h divided by the corresponding
Mach number ~a _/2,equation (1) yields

Af lf >_ An(h/r) ~ _hf-_/r. (9)

The minimum effective frequency width will be composed of
this span of modes, each broadened by 1/Q ~ a.

The above estimates are for isotropic viscosity. If the turbu-
lence does not efficiently couple to the vertical gradients of the
modes, then the mode Q-value is increased by a factor
'_(jh,/h)'- (NW93). Aside from damping modes, turbulence
can also potentially excite modes. Velocity perturbations in the
disk, &,, are made up of a mode component, 6t.._,, and a
turbulent component, 6yr. Viscous damping arises from terms
of the form 8v,_._6vr,j, while mode excitation arises from terms
of the form 8v_aSvrj (NW93). It is possible to make simple
estimates of the magnitude of the turbulent excitation and to

balance this against the turbulent damping (NW93). The modes
are excited to an amplitude of ]_:[ "" a(h/h¢)3i2h, and _a(hr/hf/-h,
for isotropic and anisotropic viscosity, respectively (NW93). If
turbulence is playing the dominant role in damping and exciting

the modes, then we have the following constraints. For isotropic
turbulence, the Q-value is large only for a << 1; however, this

implies a correspondingly small amplitude. For anisotropic vis-
cosity, not only can we tolerate a larger a, but we also achieve a
larger mode amplitude, although achieving the observationally
required nonlinear mode amplitude is difficult in either case.

4.2. Negative Radiative Damping

As a first approximation, we took the modes to be adiabatic.
In reality, we expect there to be small entropy changes due to
various effects, the most notable one being radiative losses. If
we have a radiation pressure-dominated atmosphere, as is
likely in high-luminosity disks, one properly should use

P P
hp = "r - Ap + _/-- As, (10)

p s

where s is the specific entropy. We can estimate 6 the effect of
this term for a radiation pressure-dominated atmosphere,
where one has

P Ds c VP c
4---_ - --V "-- _--_-" (11)

s Dt Kes p Kos

(c is the speed of light, K_ is the electron scattering opacity,
and we have invoked vertical hydrostatic equilibrium).

For perturbations of scalars, the Lagrangian perturbation
operator A commutes with total time derivatives D/Dt (see
Lynden-Bell & Ostriker 1967). Using this fact, and the fact
that for our modes D_s/Dt = ko_s, we can show that

PAs

- (1-i4K_PwY_(AP-P_ Oln_21_]- _]

= - i - P_'---&--r )' (12)

where _',_ is the electron scattering optical depth of the
atmosphere. The term proportional to O In f_'-/Or in the above
is negligible in the WKB approximation. The Lagrangian
variation of the entropy is therefore directly proportional to
the Lagrangian variation of the pressure.

We do not know the true radial and vertical structure of a

disk model that correctly describes the spectral observations of
GRS 1915+ 105. However, for a "standard'! Shakura-Sunyaev
o_-disk model, one can show, with w ,-. K, that co.r_h/c ,.. a -_

and hence is likely to be >>1. Taking this to be the case, we can
combine equations (10) and (12) to yield L_P/P =- 7'Ap/p,
where

7' _ 3' 1 + i -=',/(1 +ia'). (13)

We have subsumed our ignorance of the disk's vertical struc-
ture into the parameter c_',which we expect to be of O(a).

To estimate the effects that the nonadiabatic terms have

upon our modes, we can substitute the above into equation (3)
with O'-W/Or" _ -k_W and then expand it about the adiabatic
solution. Specifically, we then have a dispersion relation that
can be written in terms of a function G(w) = 0, to which we
are adding a function H(w) due to radiation damping. If w0 is

6Throughout this section, our estimates will be based upon vertically
averaged quantities rather than fullyz-dependent quantities.
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the unperturbed mode frequency and _w is its perturbation,
we then have to first order

OG

OoJ
&o + H(w0) = 0.

tou

5. CONCLUSIONS

The main motivations for attributing the 67 Hz feature in

GRS 1915+105 to a diskoseismic mode are that (1) these
(14) modes are related to a "natural" frequency in the disk (i.e., the

maximum epicyclic frequency); (2) their spectra are expected
to be characteristic of the inner, hottest regions of the disk; (3)
their frequencies are relatively insensitive to changes in lumi-
nosity; and (4) they have low rms variability. This latter
feature, although in agreement with the observations, is the
strongest constraint. These modes cannot be applied to sys-
tems that show _>10% rms variability over a wide range of
energy bands. We have identified two mechanisms, turbulent

excitation and negative radiation damping, that naturally lead
to appreciable mode amplitudes with high Q-value for a << 1.

Again, we stress that the only other "natural" disk fie-

quency, the Keplerian rotation frequency at the last marginally
stable circular orbit, would require a black hole mass a factor

_>3 larger. Furthermore, less flux is emitted from that region
than from the g-mode region.

We saw that there were two requirements for theg-modes to
be observationally detectable. First, the g-modes had to be

wide, or equivalently the disk had to be luminous, assuming
that c_,/z oc L _/2. Second, the g-mode amplitudes had to

approach the nonlinear regime. Ideally, one should perform
numerical simulations of the nonlinear development of the
g-modes to determine mode widths, Q, and luminosity modu-
lation more accurately. It is interesting to note that the MHD

simulations of Stone et al. (1996) do show copious p-mode
production associated with the turbulence (Gammie 1996).
(MHD simulations have yet to be performed for rotation and

epicyclic frequency profiles relevant to the g-mode-trapping
region.)

These g-mode oscillations should also exist in accretion

disks around compact (soft equation of state), weakly magne-
tized (B < 108 G) neutron stars. Under these conditions, the
inner radius of the disk will be less than those radii where the

g-mode exists. Again, large-amplitude (rms >> 1%) features
cannot be explained with these modes.

Even if the 67 Hz feature seen in GRS 1915+105 does not

turn out to be a diskoseismic mode, it points out two impor-
tant lessons. First, black hole candidate systems can pro-
duce relatively stable, high-frequency features. Second, the
Rossi X-Ray Timing Explorer is capable of detecting and
characterizing these features despite their weak variability.
The search for diskoseismic modes in this system and other
BHC has therefore become a viable and worthwhile pursuit.
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The mode Q-value then becomes

Q -- i _ = -i H(_o0) "" a' , (15)

where, on the right-hand side of the above, we have used
equation (3) and have taken the term Y_ to be dominant
(i.e., Y _ 1). The minus sign indicates mode growth; that is,
the modes are unstable to radiative losses. As typically kT' > h,
Y > 1, and o_< 1, it is fairly easy to obtain IQ[ >> 1.

4.3. Selection Effects

As discussed in § 2, the modes must approach nonlinearity
in order to be observationally relevant. If isotropic turbulent
excitation determines the mode amplitude, then there is a
natural maximum vertical perturbation amplitude with _ <<
1. If the turbulence is anisotropic, on the other hand, then it is
possible to achieve _ ,-- 1, so long as a ,,, (h/hr) 1/2 <_ 1. For
this case, we expect Q-values ~a -3. Radiative excitation also

naturally leads to _ ,-, 1. At some point, currently unknown,
damping effects and nonlinearities must limit this radiative
mode growth. As a zeroth-order approximation, we take the
linear growth rates calculated above to be relevant to the
near-nonlinear regime and thus to be equal to the saturated
damping rate. The above radiative Q-value then gives a rough
estimate of the width of observationally relevant modes.

The low rms variability of the modes means that only modes
with high Q-values will be detectable. Observational limits for

Q "-20 were rms ,,- 0.3% and detectable rms 0c Q-m for
narrow modes. Considering the dominant contributions as n
andj increase, turbulence leads to Q 0cj -2 (isotropic) and Q oc
n -2 (anisotropic), whereas radiative damping leads to Q 0c
).'2/n'. The limiting detectable rms variability is therefore linear

m n andj. Turbulent excitation leads only to high Q-values for
modes with low)" (isotropic) or low n (anisotropic). Radiative
damping, on the other hand, leads only to high Q-values for
modes with low n and highj. We note, however, that the mode
calculations require a smooth, well-behaved background to
perturb. If small-scale turbulence truly is responsible for disk
viscosity, our unperturbed hydrodynamic equations are rele-
vant only for the largest scales, again favoring both low n and
low j. For all cases considered above, a high Q-value is most
easily achieved for a << 1. The 67 Hz mode seen in GRS

1915+ 105, if a diskoseismic mode, therefore is likely one with
low n.and j, and t_ << 1.

Gammie, C. 1996,private communication
Lynden-Bell,D., & Ostriker, J P 1967,MNRAS, 136,293
Morgan. E., Remillard, R., & Greiner, J. 1996, IAU Circ. 6392

• 1997,ApJ, submitted
Nowak, M. A., & Wagoner, R. V. 1992,ApJ, 393, 697 (NW92)


